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High-dimensional statistics

I Dimension of the observed variable X is large.

I The dimension of the parameter θ controlling the distribution
of the observed data is large.

I The computational complexity should be sub-linear, linear or
slow-polynomial in the dimension, not exponential.

I For theoretical study, like convergence theory, the formulation
is asymptotic; p = dim(θ)→∞ as the sample size n→∞.

I This tutorial will discuss formulation of Bayesian methods,
their convergence issues, and computational aspects.
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Motivation

I Advances in technology have resulted in massive datasets
collected from all aspects of modern life. Very large datasets
appear from internet searches, mobile apps, social networking,
cloud-computing, wearable devices, as well as from more
traditional sources such as bar-code scanning, satellite
imaging, air traffic control, banking, finance, and genomics.

I Due to the complexity of such datasets, flexible models are
needed involving many parameters, routinely exceeding the
sample size.
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Key assumption: Hidden low-dimensional structure

In the high-dimensional situation, a meaningful inference is
possible only if there is a hidden lower-dimensional structure
involving far fewer parameters.

I Many normal means: Xi ∼ N(θi , σ
2), most θi are 0.

I Linear regression model: Y = 〈X , β〉+ ε. The vector of
regression coefficients β has most entries zero.

I Generalized linear model: Y ∼ g(·; 〈X , β〉), most
components of β are 0.

I Change-point model: Parametric distribution of Xi , such as
N(θi , σ

2), changes at a certain points i1 < i2 < · · · < is but
remains the same in between.
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I Graphical model: In the interrelationship among a large class
of variables, only a few pairs are directly related — typically
most pairs of variables are conditionally independent given
other variables. The underlying sparsity is very conveniently
described by a graph, where the variables are represented by
the nodes of a graph, and an edge connecting a pair is present
only if they are conditionally dependent given other variables.

I Gaussian graphical model: When the variables are jointly
Gaussian, the absence of an edge is equivalent to having a
zero-entry in the precision (inverse of the covariance) matrix
Ω = Σ−1.

I Matrix completion: Many entries of a matrix are missing and
it is assumed that the underlying true matrix has a sparse plus
a low-rank structure. Often known as the Netflix Problem.

I Stochastic block model: The extent of interaction between
two nodes is determined solely by their memberships in certain
hidden blocks of nodes: πij = g(Ci ,Cj), Ci is the block
containing i .
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Penalty approach

I Most non-Bayesian approaches use penalty functions in
optimizing an objective function that encourages a
lower-dimensional structure like sparsity.

I For instance, in a regression problem an `1-penalty is put in
the least square optimization to lead to the LASSO:
arg min{‖Y − Xβ‖2 + λ‖β‖1}.

I For a Gaussian graphical model, the graphical LASSO
arg min{n tr(SΩ)− n log det Ω + λ‖Ω‖1}, where S is the
sample dispersion matrix.
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Spike-and-slab prior

I Mitchell and Beauchamp (1988, JASA), Ishwaran and Rao
(2005, AoS):

π(θ) = (1− w)φ0(θ) + wφ1(θ),

where φ0 is a density highly concentrated at 0, φ1 is a density
(usually symmetric about 0) allowing intermediate and large
values of θ, and w is a small parameter thus inducing sparsity
in the mixture.

I For instance, φ0 may be the normal density with mean 0 and
a small variance v0 and φ1 the normal density with mean zero
and a relatively large variance v1.

I Extreme possibility v0 = 0 will be termed as
hard-spike-and-slab prior; otherwise soft-spike-and-slab prior.

I The parameters in φ0 and φ1 as well as w are usually given
further priors.
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I Spike-and-slab LASSO: Roc̆kovà and George (2018, JASA)
— Both φ0 and φ1 are Laplace densities, The posterior mode
is a sparse vector as in the LASSO.

I Generally, the spike part of the prior induces a shrinkage
towards zero, which can be limited by using a heavier tailed
density φ1 for the slab such as a t-density, or at least as
heavy-tailed as the Laplace density.

I Non-local priors: Johnson and Rossell (2010, JRSS B) —
the spike as separated as possible from the slab around zero,
by choosing slab distributions that have very little mass close
to 0.
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Posterior computation with a spike-and-slab prior

I Stochastic Search Variable Selection (SSVS): George and
McCulloch (1993, JASA) — The key technique is to introduce
latent indicator variables (γ1, . . . , γn) for spike (γ = 0) or slab
(γ = 1) and use Gibbs sampling. The posterior automatically
visits the models with substantial posterior probabilities out of
total 2n models — visiting all of them is not needed.
Non-degenarate spike avoids reversible jump MCMC, but
zeros will have to be set using the indicators.

I EMVS: Roc̆kovà and George (2014, JASA) — cheaper
alternative to SSVS. Computes the posterior mode model by
EM algorithm integrating out the variables, but cannot
compute the model posterior probabilities.
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Continuous shrinkage priors

I Computation using a spike-and-slab prior involves a latent
indicator of the mixture component. Replacing the indicator
by a continuous variable leads to the so-called continuous
shrinkage priors, typically obtained as scale mixtures of
normal.

I Bayesian LASSO: Park and Casella (2008, JASA), Hans
(2009, Biometrika) — Laplace prior which is an exponential
scale-mixture of normal. Not sufficient concentration near the
value 0 for the entire posterior to concentrate near 0 whenever
a coefficient is 0, only the posterior mode may be sparse.

I A more appropriate prior should have higher concentration
near 0 while still maintaining a thick tail, by letting the scale
parameter to have a more spiked density at 0.
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I Horseshoe prior: Carvalho, Polson and Scott (2010,
Biometrika) — a half-Cauchy scale mixture of normal

θ|λ ∼ N(0, λ2), λ ∼ Cauchy+(0, τ).

The corresponding marginal density of θ has a pole at 0 and
Cauchy-like tails.

I Horseshoe+ prior: Bhadra, Datta, Polson and Willard
(2017, BA) — τ also half-Cauchy.
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General features of a continuous shrinkage prior

I θi |λi , τ ∼ N(0, λ2
i τ

2), i = 1, . . . , n.

I λi is a local-shrinkage prior corresponding to the specific subject i ,
whereas τ is a global shrinkage parameter. Hence also called a
global-local prior or a one-component prior.

I The local shrinkage parameter should have a heavy tail while the
global shrinkage parameter should have a high concentration at 0,
respectively controlling the tail and sparsity.

I Different priors on λi lead to a variety of interesting priors:

I Normal-inverse-Gaussian: Caron and Doucet (2008, ICML)
I Normal-gamma: Griffin and Brown (2010, BA)
I Generalized double-Pareto: Armagan, Dunson and Lee (2013,

BA)
I Dirichlet-Laplace: Bhattacharya, Pati, Pillai and Dunson

(2015, JASA) — θi |φ, τ ∼ Lap(φiτ),
φ = (φ1, . . . , φp) ∼ Dir(a, . . . , a), τ is given a gamma
distribution, a ∈ (0, 1) leads to a pole at 0.
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Slowly growing dimension: Convergence without sparsity

I Consider the following common models with a large number
of parameters:
I Linear regression: Yi = θTXi + εi , independent errors

(possibly normal) with variance σ2, i = 1, . . . , n, θ ∈ Rp.

I Generalized linear model: Yi
ind∼ ExpFamily(g(θTXi )),

i = 1, . . . , n, g some link function, θ ∈ Rp.
I Exponential family: Xi i.i.d. from a p-dimensional standard

exponential family exp[xTθ − ψ(θ)] for a p-dimensional
parameter θ.

I Imagine that the dimension p of the parameter space
increases with the sample size. At what rate the posterior will
concentrate near the true value of the parameter?

I Does a kind of Bernstein-von Mises (BvM) theorem hold, that
is, is the posterior of the parameter centered at an efficient
estimator and scaled by the concentration rate approximated
by a centered normal distribution with dispersion equal to the
inverse of the Fisher information?
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BvM in increasing dimension

I Intuitively, if p grows sufficiently slowly, classical
approximations should be possible.

I Explicit restriction on the growth of p depends on several
factors such as data matrix

∑n
i=1 XiX

T
i (in regression models)

or the Hessian of ψ (in exponential families).

I Commonly the condition p = o(n1/4) ensures BvM theorem
for regression models [G. (1997, MMS) for GLM, G. (1999,
Ber)], and p = o(n1/6) for multinomial exponential family [G.
(2000, JMVA)].

I The most difficult part is estimating the tail.

I the central part is handled by a Taylor expansion.
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Normal sequence model

I Yi = θi + εi , i = 1, . . . , n, εi ∼ N(0, 1) i.i.d.,
θ = (θ1, . . . , θn) ∈ Rn.

I True vector belongs to the nearly-black class
`0[s] = {θ ∈ Rn : #{i : θi 6= 0} ≤ s}, 0 ≤ s = s(n) ≤ n.

I Minimax risk for the squared error loss is 2s log(n/s). The
logarithmic factor is the penalty for not knowing the locations
of the non-zero entries.

I Adaptation: The goal is to achieve the rate without knowing
the correct value s0 of s.

I Bayesian LASSO does not work — the posterior contracts at
a suboptimal rate near the true vector.
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Recovery using hard-spike-and-slab priors

I A remedy is to assign an additional point-mass at zero using a
hard-spike-and-slab prior: for w ∈ [0, 1] and Γ a distribution on R,
Πw = Πw ,Γ =

⊗n
i=1{(1− w)δ0 + wΓ}.

I Choose the weight parameter w = s/n if s is known for the optimal
rate s log(n/s).

I Without knowing s and taking w = c/n leads to a slightly
suboptimal rate s log n.

I Empirical Bayes using the marginal maximum likelihood empirical
Bayes approach (MMLE) maximizing∏n

i=1 ((1− w)φ(Yi ) + wg(Yi )), where g = γ ∗ φ gives the optimal
rate [Johnstone and Silverman (2004, AoS)],

I Full Bayes for w ∼ Beta(1, n + 1), or a subset-selection prior

s ∼ πn, S |s ∼ Unif(Ss), θ|S ∼
⊗
i∈S

Γ ⊗
⊗
i /∈S

δ0,

with the complexity prior πn(s) ∝ exp[−as log(bn/s)] [Castillo and
van der Vaart (2012, AoS)].
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I Dimension control: Uniformly in `0[s], for some M > 0,
Π(|S | > Ms|Y )→ 0 in probability. Proved using a combination of
likelihood and prior tail control. Helps keep the complexity of the
problem down.

I Recovery: Uniformly in `0[s], for some M > 0,
Π(‖θ − θ0‖ > Ms log(n/s)|Y )→ 0.

I Preventing over-shrinkage: Need tail at least tail as heavy as
Laplace — normal overshrinks towards zero, leading to suboptimal
convergence, and lack of uniformity over `0[s].

I Computation of model posterior probabilities:

Π(S) = Q−1
n πn(s)

(
n
s

)−1∏
i∈S ψ(Xi )

∏
i∈Sc φ(Xi ), where ψ = φ ∗ g ,

g the slab density, and the normalizer Qn is the partition function

Qn =
∑n

p=0 πn(p)
(
n
p

)−1∑
S:|S|=p

∏
i∈S ψ(Xi )

∏
i∈Sc φ(Xi ). The

most challenging part is the computation of the partition function,
of which, computation of the inner sum. Naive computation has
exponential complexity in n. It can be characterized as the
coefficient of zp in the polynomial

∏n
i=1(φ(Xi ) + zψ(Xi )), which

can be computed in O(n log2 n) time.
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Oracle approach

I For a given sparsity structure S , the oracle estimator is
θ̂S = (YS , 0Sc ) with risk E‖θ̂S − θ‖2 and complexity |S |.
Define the oracle risk r(θ) = infS R(θ,S), where
R(θ,S) = E‖θ̂S − θ‖2 + |S | log(n/|S |), and the intention is to
get a procedure (estimator, or posterior distribution) with
accuracy matching the oracle risk at all θ without knowing
which structure applies — the logarithmic factor in the second
term is needed, else the match is not possible.

I Oracle risk at a θ is better than the minimax risk over any
class it belongs to, so matching the oracle risk ensures
meeting the minimax risk over all possible structure classes.

I The concept is usable not just for sparsity classes, but in any
problem with structure classes such as smoothness regimes.

I Developed by Belitser (2017, AoS) and later paper with
co-authors.
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Normal hard-spike-and-slab prior

I We can use the normal prior. To avoid overshrinkage towards 0, the
mean is unspecified, estimated from the data.

I Model posterior probabilities are obtained by applying the Bayes
theorem under conjugacy, and plugging-in the estimate.

I Dimension control follows more easily.

I Now the posterior will contract near the correct value at the optimal
rate for all possible values of s.

I An advantage of conjugacy is that credible balls are also explicit,
and their frequentist coverage can be studied. However, no method
— Bayesian or frequentist — can adapt to the optimal size for all
parameters maintaining coverage everywhere.

I Only parameter values where the bias arising from ignoring a
component is relatively small compared with the estimation error
—- called the excessive bias restriction (EBR) condition — can
retain coverage with optimal radius credible balls.
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Other shrinkage priors

I Sparsity can also be quantified in a weak sense such as using
bound on `p-norm. To address optimal convergence in such
classes, one may use a soft-spike-and-slab prior, to get
essentially the same posterior contraction rate, provided that
the spike distribution is sufficiently concentrated.
I Spike-and-slab-LASSO: Spike distribution Lap(λ0) for

λ0 →∞, slab distribution Lap(λ1) for constant λ1.
I Horseshoe: Posterior mean has an explicit expressions in terms

of degenerate hypergeometric functions. Posterior contraction
at the rate

√
s log n [van der Pas et al. (2014 and 2017, EJS),

Ghosh and Chakraborti (2017, BA)]; uncertainty quantification
by van der Pas et al. (2017, BA).

I Dirichlet-Laplace: Bhattacharya et al. (2015, JASA) under a
growth condition on the norm of the true parameter.

I Scale-mixture of normals continuous shrinkage: Under known
sparsity, unified results are obtained by Van der Pas et al.
(2016, EJS).

I Thresholding procedure to be used to identify zero entries.
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Multiple testing

I Identifying a sparse structure is a multiple testing problem.

I False discovery rate (FDR) may be used to quantify the
accuracy of Bayesian model selection.

I Castillo and Roquain (2020, AoS) derived a uniform FDR
control over `0[s] for thresholding procedures when signals are
all above the threshold a

√
2 log(n/s), for some a > 1.

I Simultaneous control of FDR and FNR: Averages of ordered
`-values Π(θi = 0|Y1, . . . ,Yn) to set the rejection threshold.

I Bayes risk for testing [Datta and Ghosh (2013, BA)]: With a
hard-spike-and-(normal) slab prior with variance v1 and known
w , the oracle Bayes rule for rejecting H0i : θi = 0 is a
thresholding procedure
|Yi |2 > (1 + v−1

1 )[log(1 + v1) + 2 log((1− w)/w)].
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Multiple change-point model

I Xi ∼ N(θi , σ
2), change-points 1 < i1 < · · · < is−1 ≤ n, θ

same value between change points.
I Alternative lower-dimensional structure.
I Belitser and G. (2022) pursue the oracle approach with

independent normal prior for each common mean, given the
configuration of the change-points, selecting prior means by
block-average.

I Oracle rate for the Euclidean norm with the s change-points is
s log(n/s).

I Posterior contraction achieves the oracle rate.
I Modal model’s complexity bounded by a multiple of s in high

probability.
I Inflated confidence ball centered at modal estimate and size of

estimated oracle gives coverage at all parameters satisfying
the EBR condition.

I Correct change-points are identified with high true probability
if the gap between means in successive blocks are sufficiently
big, and the condition is optimal.
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Linear regression

I Yi = βTXi + εi , i = 1, . . . , p, Xi ∈ Rp

I Let ‖X‖ = max ‖X.,j‖.
I Prior πp(s) ∝ c−sp−as , S ||S | is uniform, given S , gS the

product of |S | Laplace densities β 7→ (λ/2) exp(−λ|β|),
λ = µ‖X‖, for p−1 ≤ µ ≤ 2

√
log p and the remaining entries

of β are set to 0.
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Compatibility condition

I For p > n, β cannot be uniquely recovered from Xβ.
I However, if β is assumed to be sparse (with only s � n

components non-zero) and the submatrix of X corresponding
to the active predictors is full rank s, β can be recovered.

I Define the compatibility number of model S ⊂ {1, . . . , p} by

φ(S) := inf
{
‖Xβ‖|S |1/2/‖X‖ ‖βS‖1 : ‖βSc‖1 ≤

7‖βS‖1, βS 6= 0
}

, where βS = (βi : i ∈ S), and the

`r -compatibility number in vectors of dimension s by

φr (s) := inf
{
‖Xβ‖|Sβ|1−r/2/‖X‖ ‖β‖r : 0 6= |Sβ| ≤ s

}
,

r = 1, 2, where Sβ = {j : βj 6= 0}, the support of a sparse
vector β.

I For β0 the true vector of regression coefficients and S0 = Sβ0

and s0 = |S0|, we assume that, with r = 1 or 2 depending on
the context, min

(
φr (S0), φ(Cs0)

)
≥ d > 0, where C is a

suitably large constant depending on S0, a, µ.
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Recovery

Findings from Castillo, Schmidt-Hieber and van der Vaart (2015,
AoS)

I Dimension s at most a constant multiple of the true dimension
s0, with high posterior probability in true probability.

I When the `1-compatibility numbers are bounded away from 0,
Eβ0Π(‖β − β0‖1 > Ms0

√
log p/‖X‖|Y1, . . . ,Yn)→ 0.

I The corresponding rate in terms of the Euclidean distance is√
s0 log p/‖X‖, assuming that the `2-compatibility numbers

are bounded away from 0.
I The rate for prediction, i.e., bound for ‖Xβ − Xβ0‖, is of the

order
√
s0 log p under a slightly adapted compatibility

condition.
I The convergence results are uniform over the parameter space

under the boundedness conditions on the compatibility
numbers, and match with those of celebrated estimators in
the frequentist literature.
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Variable selection

I To address variable selection, they developed a technique based on
a distributional approximation under relatively low choices of the
parameter λ, known as the small-λ regime.

I This is similar to the normal approximation to the posterior
distribution in the Bernstein-von Mises theorem, but the difference
is that in this context, the approximating distribution is a mixture of
sparse normal distributions over different dimensions.

I Then the problem of variable selection can be transferred to that for
the approximate posterior distribution, and it can be shown that no
proper superset of the correct model can be selected with
appreciable posterior probability.

I It is, however, possible to miss signals that are too small in
magnitude. If all non-zero signals are assumed to be at least of the
order

√
s0 log p/‖X‖, then none of these signals can be missed,

because missing any of them introduces an error of the magnitude
of the contraction rate. Thus, under this situation, distributional
approximation reduces to a single normal component with sparsity
exactly as in the true coefficient.
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Group sparsity and correlated response

I Ning, Jeong and G. (2020, Bernoulli) considered response variable
Y to have dimensional d →∞ slowly, and with completely
unknown d × d-covariance matrix Σ.

I The regression has group-sparsity — certain non-overlapping groups
of variables are simultaneousy active or not active.

I They used a prior on Σ using a Cholesky decomposition and used a
hard-spike-and-slab prior with multivariate Laplace slab on the
group of regression coefficients selected together.

I General theory of posterior contraction is applied using exponentially
consistent tests for separation based on the Réyni divergence.

I Squared posterior contraction rate
ε2
n = max{(s0 logG )/n, (s0pmax log n)/n, (d2 log n)/n}, where G

stands for the total number of groups of predictors, s0 the number
of active groups and pmax the maximum number of predictors in a
group, provided that the regression coefficients and the covariance
matrix are appropriately norm-bounded.

I Variable selection consistency using the BvM technique.
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General class of linear regression models

I A general setup of sparse linear regression [Jeong and G.,
(2021, EJS)]: Yi = Xiβ + ξη,i + εi ,
I εi ∼ Nmi (0,∆η,i ) independently with possibly varying

dimension mi and covariance matrices ∆η,i , depending on a
nuisance parameter η.

I The additional term ξη,i incorporates various departure from a
simple linear model

I Examples
I Multiple response models with missing components
I Multivariate measurement error models
I Parametric correlation structure
I Mixed effects models
I Graphical structure with sparse precision matrices
I Nonparametric heteroskedastic regression models
I Partial linear models
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I Euclidean distance on β and
n−1

∑n
i=1{‖ξη,i − ξη′,i‖2 + ‖∆η,i −∆η′,i‖2

F} on η are used for
contraction rates.

I Compatibility conditions are needed to recover β from Xβ as
in a simple linear regression model.

I Contraction rate derived by the general theory of posterior
contraction in terms of the Réyni divergence with the required
test obtained from local likelihood ratio tests.

I Extending the BvM technique, variable selection consistency
can be established.
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Oracle approach for linear regression

I Belitser and G. (2020, AoS) extend the oracle approach from
normal mean to linear regression.

I Oracle risk at β is
R(β, I ) = Eβ‖X β̂I − XβI‖+ σ2|I | log(ep/|I |), where
I = {i : βi 6= 0} is the model used.

I Hard-spike-and-slab prior with normal slab:
β|I ∼ N|I |(µI , κσ

2(XT
I XI )

−1), βI c = 0|I c |,

µI = (XT
I XI )

−1XT
I Y (empirical Bayes); I ||I | is uniform, |I | is

given the complexity prior.

I Conjugacy given I allows explicit expressions.
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I Fundamental oracle inequality: ‖Xβ − Xβ0‖ ≤ Mr(β0)
with high posterior probability in Pβ0-probability.

I Dimension control: within a multiple of the oracle dimension
(bounded by the true dimension) with high posterior
probability in true probability.

I Prediction (Xβ’s) accuracy: At the oracle rate
≤
√

s log(ep/s) — no compatibility condition is needed.
I Estimation rate: r(β0)

√
s/‖X‖ if the concerned

compatibility numbers are bounded away from 0 — at least as
good as using Laplace slab.

I Uncertainty quantification: Let Î be the posterior modal
model. Consider the posterior (1− α)-credible ball centered
at β̂Î . The uniformly for all parameter value satisfying an EBR
condition, the credible ball radius inflated by some M has high
frequentist coverage.

I Model selection: Modal model can be identified by a
simulated annealing algorithm with moves adding a predictor
or removing, and computing XT

I XI recursively from the
previous one.
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Other Bayesian methods for linear regression

I Narisetty and He (2014, AoS) modified the posterior measure
by sparsifying the precision matrix appearing in the
spike-and-slab posterior representation to accelerate SSVS.
Called the skinny Gibbs posterior, the optimal rate of
contraction is shown.

I Song and Liang (2017, Preprint) derived posterior contraction
and variable selection properties for continuous shrinkage
priors illustrating for the horseshoe, Dirichlet-Laplace,
normal-gamma, and t-mixtures.

I Gao, Zhou and van der Vaart (2020, AoS) considered a
structured linear model Y = LXβ + ε, where LX is a linear
operator depending on X and obtained minimax contraction
rates using a block-Laplace prior. Result applies to linear
regression, stochastic block models, biclustering, group
sparsity, multi-task learning, dictionary learning.
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Generalized linear model (GLM)

I Conjugate prior [Chen and Ibrahim (2003, Sinica)] used by
Chen et al. (2008, BA) for variable selection.

I Posterior contraction for a hard-spike-and-slab prior in terms
of Hellinger distance on the density is studied by Jiang (2007,
AoS), under log p = o(n1−ξ) for some ξ > 0, using the
general theory of posterior contraction rate.

I Atchadé (2017, AoS) studied contraction rates of
pseudo-posterior distributions in a general setting assuming
only a certain local expansion of the pseudo-likelihood ratio
and derived posterior contraction rates for hard-spike-and-slab
priors by constructing certain test functions.

I Jeong and G. (2021, Biometrika) obtained results on recovery
rates for the regression coefficients for the usual posterior
distribution using hard-spike-and-slab priors.
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Logistic regression

I For logistic regression, Wei and G. (2017, JSPI) obtained
posterior contraction rate and selection consistency were
established for continuous shrinkage priors.

I For multidimensional logistic regression model, Jeong (2021,
JSPI) obtained posterior contraction rate and selection
consistency using hard spike-and-slab priors.
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Additive nonparametric regression

Additive structure f (x1, . . . , xp) =
∑p

j=1 fj(xj).

I The minimax rate is max{
√

(s log p)/n,
√
sn−α/(2α+1)}, where s is

the number of active predictors and α is the smoothness of
individual functions. Yang and Tokdar (2015, AoS) put Gaussian
process priors for each selected component function aided by a hard
spike-and-slab variable selection prior on the set of active predictors.
Attained the minimax rate up to a logarithmic factor adaptively.

I Belitser and G. (2020, AoS) derived the same rate adaptively
without the logarithmic factor by converting the model to a linear
regression model using limited term orthogonal basis expansion and
applying the oracle inequalities. Frequentist coverage for the
posterior credible ball was obtained under an EBR condition for
random covariates.

I Wei et al. (2018, Sinica) used a B-spline basis expansion prior with
a multivariate version of the Dirichlet-Laplace continuous shrinkage
prior on the coefficients, and obtained non-adaptive posterior
contraction and variable selection consistency.
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Single index regression

Roy et al. (2020, BA): Application in brain atrophy
f (t,X ,Z ) = a0(XTβ,ZTη)− F (t)a0(XTβ,ZTη), with X a
high-dimensional predictor, Z a low-dimensional predictor and a0,
a1, F smooth functions.

I For identifiability of the model, the coefficients β and η need
to be unit vectors in respective dimensions, and β should be
sparse as well in an appropriate sense.

I Sparse prior in the polar co-ordinate system using a soft
spike-and-slab prior with a uniform slab and spike distributions
with spikes at appropriate multiples of π/2.

I Posterior contraction rate in terms of the average squared
distance on the functions using the general theory of posterior
contraction as max{n−ι/(2ι+2), n−ι

′/(2ι′+1),
√

(s log p)/n}, up
to a logarithim factor, where ι is the smoothness of the
functions (a0, a1), ι′ is the smoothness of the function F , and
s is the sparsity of the true β.
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Density regression

I Response variable Y ∈ [0, 1], predictor X ∈ [0, 1]p, conditional
density f (y |x). Only s variables are active, so constant in the
remaining arguments. Location of the these variables, s and
the smoothness indexes of the function in the variables are
unknown.

I A prior is put on conditional density using a basis expansion in
tensor products of B-splines, and inserting a spike-and-slab
mechanism while putting prior on the coefficients.

I Shen and G. (2016, Bernoulli) obtained the posterior
contraction rate (n/ log n)−β

∗/(2β∗+s), β∗ (harmonic) average
smoothness index, under log p = O(nα) for some α < 1.
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Oracle approach for general structure

Belitser and Nurushev (2019, arXiv)

I Any structured problem: For a structure I , X |(θ, I ) ∼ Pθ,I ,
satisfying some general conditions.

I Oracle rate: r2(θ) = inf I{E‖θ̂I − θ‖2 + ρ(I )}, where ρ the
model complexity (at least as big as dimension of the model
d(I )).

I Normal working model, conjugate normal prior on θ given I
with unspecified mean estimated, π(I ) ∝ e−κρ(I ).

I Posterior contracts at the rate r(I ) uniformly, giving minimax
rate for all possible classes.

I Frequentist coverage of inflated (1− α) credible ball centered
at the posterior mean of the posterior modal model Î , under
the EBR condition.
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Learning structural relationship

I A lower-dimensional structure is that most variables are
pairwise independent, so most off-diagonal entries of the
covariance matrix are (approximately) zero.
I Banding: When the variables are arranged in some natural

order, the pairwise covariances are zero (or decay quickly) if
the lag between the corresponding two indexes is larger than
some value. Holds exactly in a moving average (MA) process,
while in an autoregressive (AR) or autoregressive moving
average (ARMA) process, the covariances exponentially decay
with the lag.

I No pattern: In a p × p covariance matrix, only s of the
(
p
2

)
off-diagonal entries are non-zero.

I Another important low-dimensional structure is sparse plus
low-rank: Σ = D + ΛΛT, where D is diagonal matrix and Λ is
p × r , r � p, with possibly sparse columns. Arises in
structural linear models Xi = Ληi + εi , where Λ is a p × r
sparse factor loading matrix and ηi ∼ Np(0, I ) are
independent latent factors.
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Graphical model

I An intrinsic relation among a set of variables is described by
conditional dependence of a pair when the effects of the
remaining variables are eliminated by conditioning on them.

I It is convenient to describe this structure using a graph, where
each variable stands for a node and an edge connects a pair of
nodes if and only if the two are conditionally dependent.
Therefore such models are popularly called graphical models.

I If Xi and Xj are conditionally independent given
X−i ,−j := (Xk : k 6= i , j), then it follows that ωij = 0, where
((ωij)) = Σ−1 is the precision matrix of X , to be denoted by Ω.

I In a Gaussian graphical model (GGM), i.e., when X is
distributed as jointly normal, X ∼ Np(0,Ω−1), then the
converse also holds, namely ωij = 0 implies that Xi and Xj are
conditionally independent given X−i ,−j .
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Sparse precision matrix

I In a Gaussian graphical model, learning the graph of
dependence is learning the structure of Ω under sparsity, i.e.,
most off-diagonal entries of Ω are 0.

I Banding structure holds for autoregressive processes.
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Graphical Wishart prior

I A conjugate prior for a precision matrix with a given graphical
structure is given by a graphical Wishart distribution —
certain block marginals are Wishart.

I Banerjee and G. (2014, EJS) obtained contraction rate under
operator norm for approximately banded matrices:
εn = k3/2 max{k

√
(log p)/n, γ(k)}, where γ(k) is the

approximation rate using k-banded matrices.

I Explicit expression for Bayes estimates and model probabilities
are available.
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General sparse precision matrix

Only information: s off-diagonal entries are non-zero, s unknown,
s �

(p
2

)
, p � n.

I Graphical LASSO: Negative log-likelihood minimized with
`1-penalty on Ω.

I Bayesian analogue is Bayesian graphical LASSO by Wang
(2012, BA), converting the `1-penalty to Laplace prior on
off-diagonals, and exponential prior on diagonals.

I Restriction to positive definiteness is non-trivial, but Wang
developed a trick for fast posterior update called
’scaling-it-up’.

I Posterior concentration not possible without an edge selection
mechanism in the prior.

I Thresholding posterior samples lets edge selection.
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Recovery rate using edge selection

I Put an independent edge selection indicator in the prior
through a hard spike.

I Under some assumptions on prior parameters and the true
precision matrix, the posterior contracts at the rate
n−1/2

√
(p + s) log n with respect to the Frobenius norm

[Banerjee and G. (2015, JMVA)], which is optimal.

I Computation is much harder, but a Laplace approximation
method can compute the posterior modal model pretty fast.

I Continuous shrinkage prior like horseshoe instead of Laplace
has been used [Li et al. (2019, JCGS)] with a
data-augmentation Gibbs sampling for the half-Cauchy.

I This should have the same contraction rate under appropriate
conditions, but a formal result is not available yet.
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High dimensional discriminant analysis

I Classification based on a high-dimensional predictor
X = (X1, . . . ,Xp) ∼ Np(µ,Ω−1), where (µ,Ω) = (µ1,Ω1) for the
first group and (µ,Ω) = (µ2,Ω2) for the second.

I A Bayesian procedure with priors on µ1, µ2 and Ω1,Ω2, the
performance can nearly match the oracle if the posterior
distributions of µ1, µ2 and Ω1,Ω2 contract near the true values
sufficiently fast.

I Du and G. (2018, Sankhya) put a prior on Ω based on a sparse
modified Cholesky decomposition Ω = LDLT.

I Positive definiteness is automatic, but prior is dependent on
ordering.

I If the probability of a non-zero entry is decreased as i−1/2, then the
probability of a non-zero at the ith and jth rows of Ω are roughly
equal for large i � j .

I Misclassification rate converges to that of the oracle Bayes classifier
for a general class of shrinkage priors when p2(log p)/n→ 0, if the
number of off-diagonal entries in the true Ω is O(p).
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Ising model

I Bernoulli random variables defined over the nodes of the
graph G = (V ,E )
p(X ; θ) = exp{

∑
r∈V θrXr +

∑
(r ,t)∈E θrtXrXt − A(θ)}.

I Evaluation of the log-partition function A(θ) is challenging —
variational methods have been developed.

I The conditional distribution of the nodes gives a logistic
regression model.

I This gives a pseudo-likelihood function, by multiplying all
one-dimensional conditionals.

I Atchade’s rate result applies in this case.
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Nonparanormal model

I The distribution of X = (X1, . . . ,Xp) ∈ [0, 1]p reduces to a
multivariate normal vector through p monotone increasing
transformations: for some monotone functions f1, . . . , fp,
f (X ) := (f1(X1), . . . , fp(Xp)) ∼ Np(µ,Σ) for some µ ∈ Rp

and positive definite matrix Σ.

I The model is not identifiable and needs to fix the location and
scale of the functions or the distribution.

I Mulgrave and G. (2020, BA): A finite random series based on
a B-spline basis expansion is used to construct a prior on the
transformation.

I The B-spline basis maintains monotonicity if the coefficients
only needs to be made increasing.

I Usual priors on µ and Σ.
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I A multivariate normal prior truncated to the cone of ordered
values can be conveniently used.

I Constraints f (0) = 1/2 and f (3/4)− f (1/4) = 1 are imposed,
which translate to linear constraints, and hence the prior
remained multivariate normal before imposing the order
restriction.

I Samples from the posterior distribution of the ordered
multivariate normal coefficients can be efficiently obtained
using the exact Hamiltonian MCMC (Packman and Paninski,
2014, JCGS).

I Learning of f and (µ,Σ) are (separately) consistent.

I Other approaches are regression-based (Mulgrave and G.,
2022 SADM) and rank-likelihood based (Mulgrave and G.,
2022 JSPI).
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Graphical model with measurement error

I (X1, . . . ,Xp) follows a Gaussian graphical model with sparse
precision matrix Ω, but Xi are observed only with a
measurement error, that is, we observe Yi = Xi + Zi ,
i = 1, . . . , p, where each Zij is independent N(0, ν), ν known.

I The precision matrix for an observation is (Ω−1 +νI )−1, which
need not be sparse, but has a lower-dimensional structure.

I Shi, G. and Martin (2021, EJS) showed that the contraction
rate for the no-measurement error case under the Frobenius
norm is preserved, by extracting Ω from (Ω−1 + νI )−1.

I Interestingly, ν need not be small.

I If ν is unknown, a replication Yij = Xi + Zij does the job.

I Non-Gaussian measurement errors can also be handled, but
the results are not so neat.
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Estimating a long vector smoothly varying over a graph

I Xi = θi + εi , εi ∼ N(0, σ2) independently, i ∈ V = {1, . . . , n}.
I There is a natural notion of neighbors for elements of V ,

giving an undirected graph.

I f = (θ1, . . . , θn) is assumed to “smoothly vary” over V .

I Mathematically quantified through the graph Laplacian
L = D − A, where D is the diagonal matrix of node degrees,
and A stands for the adjacency matrix.

I f is said to belong to a Hölder ball of β-smoothness of radius
Q if 〈f , (I + (n2/rL)β)f 〉 ≤ Q2, r graph’s dimension.

I The minimax rate of recovery is n−β/(2β+r) [Kirichenko and
van Zanten (2018, EJS)].

I For prior f ∼ Nn(0, (n/c)(2α+r)/r (L + n−2I )(2α+r)/r ), c
exponential, the posterior contracts nearly at the optimal rate
if β ≤ α + r/2 [Kirichenko and van Zanten (2017, EJS)].
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Functional observations over a graph

I The last result can be extended to observations taking values
in a Hilbert space as well, so that functional observations can
be treated [Roy and G., (2021, JMVA)].

I They introduced a notion of Sobolev smoothness classes
indexed by two smoothness indexes, β for the graphical
smoothness and γ for the functional smoothness.

I They designed Bayes procedures which achieve the minimax
rate of recovery is n−βγ/(2βγ+β+rγ), where r is the dimension
of the graph.

I If the smoothness index γ is unknown, the rate can be
achieved by a Bayes procedure adaptively within a logarithmic
factor.

I In a non-adaptive setting, they also showed that a slightly
inflated Bayesian credible ball of optimal size has adequate
frequentist coverage.
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Matrix models

A number of high-dimensional problems involve unknown matrices
instead of vectors. Some examples include multiple linear
regression with group sparsity, multi-task learning, matrix
completion, stochastic block model and biclustering.
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Generic results in structured linear models

I Gao et al. (2015, AoS) obtained posterior contraction rates
for many models simultaneously in a general ‘signal plus noise’
model when the signal is a vector or a matrix having some
specific structure.

I One example is multiple linear regression with group sparsity,
where one observes Y = XB + W , with X being an n × p
matrix, B a p ×m matrix, and the columns of B are assumed
to share common support of size s.

I They obtained the minimax rate s(m + log(ep/s)) for the
prediction problem of estimating XB in Frobenius norm.
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I This model is a special case of so-called multi-task learning
problems, where the columns of B share some specific
structure.

I For instance, instead of assuming a joint sparsity pattern
among columns, one may assume that columns of B can only
be chosen from a given list of k � m possible columns. The
corresponding posterior contraction rate is pk + m log k.

I Dictionary learning assumes that the signal matrix of size
n × d is θ = QZ , for Q an n × p dictionary matrix and Z a
discrete matrix of size p × d with sparse columns. The
corresponding posterior contraction rate is np + ds log(ep/s).
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Stochastic block model

I k groups, Y = θ + W with θij = Qz(i)z(j) ∈ [0, 1]n×n for some
matrix Q of size k × k of edge probabilities, a labeling map
z ∈ {1, . . . , k}n and W a centered Bernoulli noise.

I A Bayes procedure contracts adaptively at the minimax rate
k2 + n log k with unknown k [Belitser and Nurushev (2019,
arXiv), Pati and Bhattacharya (2015, arXiv)]

I Biclustering model: An asymmetric extension of the SBM,
where θ is an n ×m rectangular matrix and rows and columns
of Q have their own labeling, with k and l groups respectively.
Adaptive posterior contraction rate is kl + n log k + m log l
[Gao et al. (2020, AoS), Belitser and Nurushev (2019, arXiv)].
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Community detection

I Recovery of labels z·.

I Van der Pas and van der Vaart (2018, BA) showed that the
posterior mode corresponding to a beta prior on edge
probabilities and Dirichlet prior probabilities for the label
proportions asymptotically recovers the labels when the
number of groups k is known, provided that the mean degree
of the graph is at least of order log2 n.

I Their approach relies on studying the Bayesian modularity,
that is, the marginal likelihood of the class labels given the
data, when the edge probabilities are integrated out.

I Kleijn and van Waaij (2018, Preprint) and van Waaij and
Kleijn (2020, Preprint) derived rates for Bayesian estimation
and uncertainty quantification in the special case of the
planted multi-section model, where the matrix Q has only two
different values, one for diagonal elements and another for
off-diagonal ones.
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Matrix completion

I We observed n randomly selected noisy entries of an unknown
m × p matrix M typically assumed to be of low-rank r (or
well-approximated by a low-rank matrix).

I The nearly optimal recovery rate (m + p)r log max(m, p)was
obtained by Mai and Alquier (2015, EJS) using a
PAC-Bayesian procedure with a prior sitting close to
small-rank matrices.

I Suzuki (2015, Proc of MLR) derived similar results for
posterior distributions, and generalized to tensors.
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High-dimensional Variational Bayes

I Variational Bayes is an optimization-based fast posterior
computing tool.

I However, it does not actually compute the posterior
distribution, not even approximately — just obtains a random
measure that tracks the actual posterior within a
predetermined family in the best possible way.

I From a frequentist-Bayes point of view, we should not mind if
the resulting random measure has (nearly) the same
contraction rate under essentially the same conditions.

I For high-dimensional regression, spike-and-slab prior based
mean-field variational posterior computation techniques have
been developed [Carbonetto and Stephens (2012, BA),
Ormerod et al. (2017, EJS)].

I Ray and Szabó (2020, JASA) obtained contraction rate using
the class ⊗p

i=1{γiN(µi , σ
2
i ) + (1− γi )δ0}.
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Thank you
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